亚洲精品第一国产综合精品,人人狠狠综合久久亚洲,国产一区二区三区日韩精品,九九久久精品免费观看,无码一区二区三区,麻豆精品久久久久久久99蜜桃,亚洲国产精品VA在线观看麻豆,14美女爱做视频免费,,,

Cell Biolabs彗星實(shí)驗(yàn)試劑盒

由于環(huán)境因素和細(xì)胞內(nèi)的正常代謝過程造成的DNA損傷,每個(gè)細(xì)胞每天都會發(fā)生1,000到1,000,000個(gè)。雖然這些只占人類基因組約60億個(gè)堿基中的一小部分,但如果關(guān)鍵基因損傷未及時(shí)修復(fù),可能會阻礙細(xì)胞的正常生理功能,進(jìn)而增加癌變可能。彗星實(shí)驗(yàn),或稱單細(xì)胞凝膠電泳(Single cell gel electrophoresis,SCGE,是一種測量單個(gè)細(xì)胞DNA損傷的常用技術(shù)。其原理簡單,即在電泳場,將受損細(xì)胞DNA(包含片段和鏈斷裂)與完整的DNA分離,通過顯微鏡觀察到損傷細(xì)胞呈現(xiàn)出典型的彗星狀尾巴,然后通過測量計(jì)算彗尾大小對比出細(xì)胞DNA損傷的程度。因?yàn)?/span>彗星實(shí)驗(yàn)特點(diǎn),該方法幾乎被用來評估任何類型的真核細(xì)胞的 DNA 修復(fù)能力,包括雙、單鏈斷裂的不同的 DNA 損傷情況。是一種能快速、大通量檢測真核細(xì)胞DNA損傷進(jìn)而判別遺傳毒性的技術(shù)。

彗星實(shí)驗(yàn)結(jié)果圖

彗星實(shí)驗(yàn)原理簡單,但操作繁瑣,需要豐富的實(shí)驗(yàn)經(jīng)驗(yàn)和技巧,尤其常常出現(xiàn)的“脫膠”問題,困擾了科研人員。除此之外有時(shí)為了跑出完美的“彗星”圖案放在paper里,還需要重復(fù)做許多次實(shí)驗(yàn),費(fèi)時(shí)費(fèi)力。為了解決上述問題,我們推薦CellBiolabsOxiSelectTMComet Assay Kit即彗星實(shí)驗(yàn)試劑盒來檢測細(xì)胞的DNA損傷。該試劑盒不僅能讓彗星實(shí)驗(yàn)化繁為簡,還兩種不同規(guī)格(3孔和96孔)的細(xì)胞電泳凝膠板供選擇讓少量樣本和大量樣本的DNA損傷檢測通通輕松hold住。用該試劑做彗星實(shí)驗(yàn)流程如下圖。

除了操作簡便,OxiSelectTMComet Assay Kit還有以下優(yōu)點(diǎn):

1)      適用于各種DNA損傷檢測,是一款非常好用的DNA損傷檢測篩選工具;

2)      試劑盒中的載玻片經(jīng)過特殊處理以粘附低熔點(diǎn)瓊脂糖,避免“脫膠”問題出現(xiàn);

3)      采用特殊的DNA熒光染料,能有效降低背景干擾,更加方便讀取實(shí)驗(yàn)結(jié)果。


彗星實(shí)驗(yàn)試劑盒信息:

品名

貨號

規(guī)格

說明

OxiSelectTM Comet Assay Kit (3-Well Slides)

STA-350

15 assays

試劑盒內(nèi)有53孔載玻片和彗星實(shí)驗(yàn)所需的低熔點(diǎn)瓊脂糖、裂解液及DNA熒光染料,共可檢測15個(gè)樣品。

OxiSelectTM Comet Assay Kit (3-Well Slides)

STA-351

75 assays

試劑盒內(nèi)有25張3孔載玻片和彗星實(shí)驗(yàn)所需的低熔點(diǎn)瓊脂糖、裂解液及DNA熒光染料,共可檢測75個(gè)樣品。

OxiSelectTM Comet Assay Kit (96-Well Slides)

STA-355

96 assays

試劑盒內(nèi)有1張96孔載玻片和彗星實(shí)驗(yàn)所需的低熔點(diǎn)瓊脂糖、裂解液及DNA熒光染料,共可檢測96個(gè)樣品。



為了
滿足客戶更多樣的實(shí)驗(yàn)需求,彗星實(shí)驗(yàn)試劑盒內(nèi)特殊處理電泳載玻片可以單獨(dú)購買,詳情如下:

 


品名

貨號

規(guī)格

產(chǎn)品圖片

Comet Assay Slides, 3-Well

STA-352

5 slides

STA-353

25 slides

Comet Assay Slides, 96-Well

STA-356

1 slides

STA-356-5

5 slides

產(chǎn)品部分發(fā)表文獻(xiàn):


  1. Wang, T. et al. (2021). The effects of glucose-6-phosphate dehydrogenase deficiency on benzene-induced hematotoxicity in mice. Ecotoxicol Environ Saf. 226:112803. doi: 10.1016/j.ecoenv.2021.112803.
  2. Ciminera, A.K. et al. (2021). Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance. 4(10):e202101159. doi: 10.26508/lsa.202101159.
  3. Hudita, A. et al. (2021). Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro. Nanotoxicology. doi: 10.1080/17435390.2021.1943032.
  4. Hung, S.Y. et al. (2021). Bavachinin Induces G2/M Cell Cycle Arrest and Apoptosis via the ATM/ATR Signaling Pathway in Human Small Cell Lung Cancer and Shows an Antitumor Effect in the Xenograft Model. J Agric Food Chem. doi: 10.1021/acs.jafc.1c01657.
  5. Cho, K. et al. Suppressor of cytokine signaling 2 is induced in Huntington's disease and involved in autophagy. Biochem Biophys Res Commun. 559:21-27. doi: 10.1016/j.bbrc.2021.04.089.
  6. Cho, D.H. et al. (2021). Far-infrared irradiation inhibits breast cancer cell proliferation independently of DNA damage through increased nuclear Ca2+/calmodulin binding modulated-activation of checkpoint kinase 2. J Photochem Photobiol B. doi: 10.1016/j.jphotobiol.2021.112188.
  7. Li, J. et al. (2021). Melatonin ameliorates cypermethrin-induced impairments by regulating oxidative stress, DNA damage and apoptosis in porcine Sertoli cells. Theriogenology. 167:67-76. doi: 10.1016/j.theriogenology.2021.03.011.
  8. Li, M.Z. et al. (2021). Discovery of MTR-106 as a highly potent G-quadruplex stabilizer for treating BRCA-deficient cancers. Invest New Drugs. doi: 10.1007/s10637-021-01096-4.
  9. Jeske, R. et al. (2021). Agitation in a Microcarrier-based Spinner Flask Bioreactor Modulates Homeostasis of Human Mesenchymal Stem Cells. Biochem Eng J. doi: 10.1016/j.bej.2021.107947.
  10. Zhou, W. et al. (2021). Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species. Mar Pollut Bull. 164:111995. doi: 10.1016/j.marpolbul.2021.111995.
  11. Park, K. et al. (2021). Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription–replication conflict regions. PLoS Genet. 17(4): e1009523. doi: 10.1371/journal.pgen.1009523.
  12. Ramos, H. et al. (2021). A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Rep. 35(2):108982. doi: 10.1016/j.celrep.2021.108982.
  13. Planelló, R. et al. (2021). Genotoxic effects and transcriptional deregulation of genetic biomarkers in Chironomus riparius larvae exposed to hydroxyl- and amine-terminated generation 3 (G3) polyamidoamine (PAMAM) dendrimers. Sci Total Environ. doi: 10.1016/j.scitotenv.2021.145828.
  14. Fan, D. et al. (2021). A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin. Cancers (Basel). 13(3):446. doi: 10.3390/cancers13030446.
  15. Siemionow, M. et al. (2020). Transplantation of Dystrophin Expressing Chimeric (DEC) Human Cells of Myoblast/MSC Origin Improves Function in Duchenne Muscular Dystrophy Model. Stem Cells Dev. doi: 10.1089/scd.2020.0161.
  16. Lammert, C.R. et al. (2020). AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature. doi: 10.1038/s41586-020-2174-3.
  17. Shibayama, Y. et al. (2020). Aberrant (pro)renin receptor expression induces genomic instability in pancreatic ductal adenocarcinoma through upregulation of SMARCA5/SNF2H. Commun Biol. 3(1):724. doi: 10.1038/s42003-020-01434-x.
  18. Han, J. et al. (2020). Elevated CXorf67 Expression in PFA Ependymomas Suppresses DNA Repair and Sensitizes to PARP Inhibitors. Cancer Cell. doi: 10.1016/j.ccell.2020.10.009.
  19. Hays, E. et al. (2020). The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease. Cell Cycle. doi: 10.1080/15384101.2020.1831256.
  20. Ibnu Rasid, E.N. et al. (2020). Effect of Dioscorea hispida var. Daemona (Roxb) Prain & Burkill on Oxidative Stress and DNA Damage in the Liver of Pregnant Rats. Int J Biomed Sci. 16(3).
  21. Le, B.V. et al. (2020). TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Rep. 33(1):108221. doi: 10.1016/j.celrep.2020.108221.
  22. Klotz-Noack, K. et al. (2020). SFPQ Depletion Is Synthetically Lethal with BRAFV600E in Colorectal Cancer Cells. Cell Rep. 32(12):108184. doi: 10.1016/j.celrep.2020.108184.
  23. Ito, S.S. et al. (2020). Inhibition of the ATR kinase enhances 5-FU sensitivity independently of non-homologous end-joining and homologous recombination repair pathways. J Biol Chem. doi: 10.1074/jbc.RA120.013726.
  24. Klak, M. et al. (2020). Irradiation with 365 nm and 405 nm wavelength shows differences in DNA damage of swine pancreatic islets. PLoS One. 15(6):e0235052. doi: 10.1371/journal.pone.0235052.
  25. Khalil, A.M. et al. (2020).  Association between Mobile Phone Using and DNA Damage of Epithelial Cells of the Oral Mucosa. J Biotechnol Biomed. 3(2020): 50-66. doi: 10.26502/jbb.2642-91280027.
  26. Wang, Y. et al. (2020). Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Sci Adv. doi: 10.1126/sciadv.aaz3221.
  27. Fang, Y. et al. (2020). Epigenetic dysregulation of Mdr1b in the blood-testis barrier contributes to dyszoospermia in mice exposed to cadmium. Ecotoxicol Environ Saf. 190:110142. doi: 10.1016/j.ecoenv.2019.110142.
  28. Cupello, S. et al. (2019). Distinct roles of XRCC1 in genome integrity in Xenopus egg extracts. Biochem J. 476(24):3791-3804. doi: 10.1042/BCJ20190798.
  29. Naci, D. et al. (2019). Cell adhesion to collagen promotes leukemia resistance to doxorubicin by reducing DNA damage through the inhibition of Rac1 activation. Sci Rep. 9(1):19455. doi: 10.1038/s41598-019-55934-w.
  30. Lu, S. et al. (2019). Additive effects of a small molecular PCNA inhibitor PCNA-I1S and DNA damaging agents on growth inhibition and DNA damage in prostate and lung cancer cells. PLoS One. 14(10):e0223894. doi: 10.1371/journal.pone.0223894.



北京西美杰科技有限公司是Cell Biolabs品牌全國一級代理,為用戶提供完善的技術(shù)支持與售后服務(wù)。如對產(chǎn)品感興趣歡迎撥打西美杰客服熱線400-050-4006或了解更多信息。

 

在線客服
二连浩特市| 温州市| 焦作市| 彰化县| 丹江口市| 中江县| 理塘县| 莱州市| 汤阴县| 夹江县| 武强县| 从江县| 尚义县| 体育| 子洲县| 绥阳县| 武山县| 蕉岭县| 正安县| 阜康市| 德惠市| 九江市| 桐柏县| 武邑县| 安化县| 高青县| 瑞金市| 马山县| 农安县| 山阴县| 临沧市| 广昌县| 兴国县| 邹城市| 百色市| 正阳县| 邓州市| 昌图县| 囊谦县| 湄潭县| 锡林浩特市|